Thank you for purchasing the balance charger. This is a rapid charge/discharger with built in balancer, computerised with microprocessor and specialised operating software. Please read this entire operating manual completely and attentively before using.
Contents

1. Features ... 01
2. Exterior of the unit 03
3. Warnings and safety notes 04
4. Program flow chart 07
5. Initial Parameter set up (Users' set up) 08
6. Lithium battery(Lilo/LiPo/LiFe) program 10
 6.1 Charging Lithium Battery 10
 6.2 Charging Lithium battery at balance mode 11
 6.3 'FAST' charging Lithium battery 11
 6.4 'STORAGE' control Lithium battery 12
 6.5 Discharging Lithium battery 12
 6.6 Voltage balancing and monitoring during the discharge 13
7. NiMH/NiCd battery program 13
 7.1 Charging NiCd/NiMH battery 14
 7.2 Discharging NiCd/NiMH battery 14
 7.3 Charge-to-discharge & discharge-to-charge cycle NiMH/NiCd battery 14
8. Pb(lead-sulphuric acid) battery program 15
 8.1 Charging Pb battery 15
 8.2 Discharging Pb battery 15
9. Cell Meter test program 16
10. IR test program 16
11. Memory Mode ... 17
12. Various information during the process 17
13. Warning and error messages 18
14. Specifications 20
15. Warranty and service 21
1. Features

Optimised operating software

When charging or discharging, it has an 'AUTO' function that sets the feeding current automatically. Especially for Lithium batteries, it can prevent the over-charging can lead to an explosion by users fault. Every program in the unit is controlled with mutual links and communication for every possible error so it introduces a maximum safety. These can be set at users option.

Special recharge plugsport for receiver, transmitter and igniter charger. And for frequently used charger port such as multi purpose crocodile pin etc.

It provides most convenient balance charge port for Lithium batteries, with separated 3,4,5,6 charge port, and external reverse connector.

High-power and high-performance circuit

It employs the circuit that features four totally independent but identical power outputs which are powered 100 watts each. Total powers are 400 watts. As a result, it can charge or discharge up to 4 x 15 cells of NiCd/NiMH or 4 x 6 series of Lithium batteries simultaneously, and maximum current of 10.0A. Furthermore the cooling system is so efficient that can hold such a power without any trouble of running the CPU or the operating program.

Individual voltage balancer for Lithium batteries inside

It has an individual-cell-voltage balancer inside. This does not require any extra balancer separately when charging Lithium batteries(Lilo/LiPO/LiFe/LiHV) for cell voltage balancing.

Balance individual cells on discharge

It also can monitor and balance individual cells of the Lithium battery pack during the discharge process. If the voltage of any one cell varies abnormally, the process will be stopped with the error message.

Accept various types of Lithium battery

It can accept three types of Lithium batteries- Lilo,LiPo,LiFe and LiHV. They have different characteristics by their chemistry. You can select any one of them that you are going to process before the job. For their specifications, refer 'Warnings and safety notes' section.

Lithium battery 'Fast' and 'Storage' mode

You can charge Lithium battery for special purposes. 'Fast' charge reduces the charging time of Lithium battery and 'Storage' mode controls the final voltage of the battery to be suit for long time storage.

Maximum safety

Delta-peak sensitivity: The automatic charge termination program works on the principle of the Delta-peak voltage detection.(NiCd/NiMH)
Auto-charge current limit: When charging NiCd or NiMH at 'AUTO' current mode, you can set the upper limit of change current to avoid from high current charging. This is very useful when charging the low impedance and small capacity NiMH battery in 'AUTO' mode.

Capacity limit: The changing capacity always calculated by multiple of the charging current and time. If the charging capacity exceeds the limit the process will be terminated automatically when you set the maximum value.

Temperature limit: The temperature of the battery on charging will rise by its internal chemical reaction. If you set the limit of temperature the process will be expired forcibly when the limit has reached.

Processing time limit: you can also restrain the maximum process time to prevent from any possible defect.

Input power monitor: To protect the car battery using as input power from being damaged the voltage of it always monitored. If it dorps below the lower limit the process will be ended automatically.

Automatic cooling fan: The electric cooling fan comes into action automatically only when the internal temperature of the unit is raised.

Cyclic charging/discharging

Perform 1 to 5 cycles of charge>discharge or discharge>charge continually for battery refreshing and balancing.

PC based analysis using USB communication

For technical expert, It offers PC based program can analyse the characteristic of the battery by USB port. It shows a graph of voltage, current, capacity and temperature curves. It also shows the individual voltage of each cell in the Lithium battery pack.
2. Exterior of the unit
3. Warnings and safety notes

⚠️ Never leave the charge unsupervised when it is connected to its power supply. If any malfunction is observed immediately terminate the process and refer to the operation manual.

⚠️ Keep away the unit from dust, damp, rain, heat, direct, sunshine and vibration. Do not dorp it.

⚠️ The circuit of the unit is designed to be powered by 11.0~18.0V DC only.

⚠️ This unit and the battery to charge or discharge should be set up on a head-resistant, non-inflammable and non-conductive surface. Never place them on a car seat, carpet or similar. Keep all the inflammable volatile materials well away from operating area.

⚠️ Be sure to understand the information of the battery to be charged or discharged accurately. If the program is set up incorrectly the battery can severely be damaged. Especially Lithium battery can cause a fire or an explosion by over-charging.

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 1.2V/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCd/NiMh</td>
<td>Allowed fast charge current: 1C~2C rely on the running of the battery.</td>
</tr>
<tr>
<td></td>
<td>Discharger voltage cut off grade: 0.85V/cell</td>
</tr>
<tr>
<td></td>
<td>NiCd battery/NiMh battery 1.0V/cell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 3.6V/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lilo</td>
<td>Max charge voltage: 4.1V/cell</td>
</tr>
<tr>
<td></td>
<td>Allowed fast charge current: 1C or less</td>
</tr>
<tr>
<td></td>
<td>Min discharge voltage cut off grade: 2.5V/cell or More</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 3.7V/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiPo</td>
<td>Max charge voltage: 4.2V/cell</td>
</tr>
<tr>
<td></td>
<td>Allowed fast charge current: 1C or less</td>
</tr>
<tr>
<td></td>
<td>Discharger voltage cut off grade: 3.0V/cell or More</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 3.3V/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFe</td>
<td>Max charge voltage: 3.6V/cell</td>
</tr>
<tr>
<td></td>
<td>Allowed fast charge current: 4C or less (For example: A123M1)</td>
</tr>
<tr>
<td></td>
<td>Discharger voltage cut off grade: 2.5V/cell or More</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 3.8V/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiHV</td>
<td>Max charge voltage: 4.35V/cell</td>
</tr>
<tr>
<td></td>
<td>Allowed fast charge current: 1C or less</td>
</tr>
<tr>
<td></td>
<td>Min discharge voltage cut off grade: 3.0V/cell or More</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Voltage grade: 2.0V/cell (Lead-acid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>Max charge voltage: 2.46V/cell</td>
</tr>
<tr>
<td></td>
<td>Allowed fast charge current: 0.4C or less</td>
</tr>
<tr>
<td></td>
<td>Discharger voltage cut off grade: 1.50V/cell or More</td>
</tr>
</tbody>
</table>

⚠️ To avoid short-circuits between the charge lead, always connect the charge cable to the unit first and only then to the battery to be charged or discharged. Reverse the sequence when disconnecting.
Do not connect more than one battery pack to the charge lead at any one time.

Do not attempt to charge or discharge the following types of battery.
- Battery pack, which consists of different types of cell (including different manufacturers).
- Battery, which is already fully charged or just slightly discharged.
- Non-rechargeable batteries (Explosion hazard).
- Batteries that require a different charge technique from NiCd, NiMH, Lilo, LiPo, LiFe or Pb.
- Faulty or damaged battery.
- Battery fitted with an integral charge circuit or a protection circuit.
- Batteries installed in a device, or which are electrically linked to other components.
- Batteries that are not expressly stated by the manufacturer to be suitable for the currents the charger delivers during the charge process.

Please bear in mind of checking the following point before charge operation.
- Did you select the appropriate program, which are suitable for the type of battery?
- Did you set up adequate current for charging or discharging?
- Lithium battery pack can be composed with parallel and series circuits mixed. You have to check the composition of the battery pack carefully before charging.
- Are all connections firm and safe, or is there an intermittent contact at any point in the circuit?

Charging

A specific quantity of electrical energy is fed into the battery during charge process. The charge quantity is calculated by multiplying charge current by charge time. The maximum permissible charge current varies according to the battery type or its performance, and can be found in the information provided by the battery manufacturer. It is only allowed to charge batteries at rates higher than the standard charge current if they are expressly stated to be capable of quick-charge.

Connect the battery to charge to output terminal of the charger using suitable charge lead. They are red, positive (+) and black, negative (-). Since the charger cannot detect the difference between the internal resistance of the battery pack, cable resistance and connector transfer resistance, the first requirement if the charger to work properly is that the charge lead should be of adequate conductor cross-section. And also high-quality connectors (normally gold-contact type) must be fitted to both ends.

- Refer to the information provided by the battery manufacturer regarding charging methods, and verify the recommended charge current and charge time. Especially for Lithium batteries, you have to follow the charge instruction provided by the manufacturer strictly.
- Do not attempt to disassemble the battery pack arbitrarily.

You have to pay attention to verify the capacity and the voltage of the Lithium battery pack. It may be composed of parallel and series connection mixed. In parallel link the capacity of the battery pack is multiplied by the number of cells but the voltage remains same. That kind of voltage imbalance causes a fire or explosion during charge process. We recommend you compose the Lithium battery pack in series only.
Discharge

The typical purpose of discharge is to determine the residual capacity of the battery, or to lower the voltage of battery to a defined level. When you discharge the battery you also have to pay attention on the process same as charging. To avoid the battery becoming deep-discharged, set the final discharge voltage correctly. Lithium batteries should not be deep-discharged to lower than the minimum voltage, as this leads to a rapid loss of capacity or a total failure. Generally, you do not need to discharge Lithium battery voluntarily.

- Some rechargeable batteries are said to have a memory effect. If they are partly used and recharged before the whole charge is drawn out, they ‘remember’ this and next time will only use that part of their capacity. This is a ‘memory effect’. NiCd and NiMH batteries are said to suffer from memory effect. They prefer complete cycles; fully charge then use until empty, do not recharge before storage-allow them to self-discharge during storage. NiMH batteries have less memory effect than NiCd.

- The Lithium battery prefers a partial rather than a full discharge. Frequent full discharges should be avoided if possible. Instead, charge the battery more often or use a larger battery.

- The brand-new NiCd battery pack is partially useful with its capacity until it has been subjected to 10 or more charge cycles in any case. The cyclic process of charge and discharge will lead to optimise the capacity of battery pack.

Those warnings and safety notes are particularly important. Please follow the instructions for a maximum safety; otherwise the charger and the battery can be damaged violently. And also it can cause a fire to injure a human body or to lose the property.
4. Program flow chart

USER PROGRAM SETUP

Start Enter

Batt type stop

PROGRAM MEMORY LiPo[0]

Start Enter

Batt type stop

LiPo[0] CHARGE
10.0A 22.2 (6S)

DEC

INC

Batt type stop

PROGRAM MEMORY LiIo[0]

Start Enter

Batt type stop

LiPo[0] DISCHG
2.0A 22.2 (6S)

DEC

INC

Batt type stop

PROGRAM MEMORY LiFe[0]

Start Enter

Batt type stop

LiPo[0] STORE
10.0A 22.2 (6S)

DEC

INC

Batt type stop

PROGRAM MEMORY LiHV[0]

Start Enter

Batt type stop

LiPo[0] FAST
10.0A 22.2 (6S)

DEC

INC

Batt type stop

PROGRAM MEMORY Pb[0]

Start Enter

Batt type stop

LiPo[0] BALANCE
10.0A 22.2 (6S)

DEC

INC

Batt type stop

PROGRAM MEMORY NiMH[0]

Start Enter

NiMH[0] CHARGE A
CURRENT 10.0A

DEC

INC

Batt type stop

PROGRAM MEMORY NiCd[0]

Start Enter

NiMH[0] DISCHG
1.0A 0.1V

DEC

INC

Batt type stop

USER PROGRAM Meter

Start Enter

4.20 4.20 4.20
4.20 4.20 4.20

DEC

INC

Batt type stop

Test LDXX Internal Resistance

Input Power Low
Cut-off 10.0V

DEC

INC

Key Beep
Buzzer
ON

DEC

INC

Capacity Cut-off
ON 10000mAh

DEC

INC

Safety Timer
ON 240min

DEC

INC

Waste Time
CHG>DCHG 5min

DEC

INC

Temp Cut-off
ON 80C 176F

DEC

INC

NiCd Sensitivity
D. Peak Default

DEC

INC

NiMH Sensitivity
D. Peak Default
5. Initial Parameter set up (Users' set up)

It will be operated with the default value of the essential user settings when it is connected to a DC 10~18V battery for the first time. The screen displays the following information in sequence and the user can change the value of parameter on each screen.

When you are willing to alter the parameter value in the program, press **Start/Enter** key to make it blink then change the value with **INC** or **DEC** key. The value will be stored by pressing **Start/Enter** key once.

User set up starting screen.

It recognise the cell count of Lithium battery automatically at the beginning of charge or discharge process to avoid from erroneous setting by user. But deeply discharged battery can be perceived incorrectly. To prevent the error, you can set the time term to verify the cell count by the processor. Normally, 10 minutes are enough to perceive the cell count correctly. For the battery of larger capacity, you may extend the time term. But if you set the time term too long for the battery of smaller capacity, the charge or discharge process can be finished within the time term with the erroneous cell count. This may cause the fatal result. If the processor recognises the cell count incorrectly at the beginning of charge or discharge process, you may extend the time. Otherwise, you had better use with the default value.

This shows the trigger voltage for automatic charge termination of NiMH and NiCd battery. The effective value ranges from 5 to 20mV per cell. If the trigger voltage is set higher, there is a danger of overcharging the battery; if it is set lower, there is a possibility of premature termination. Please refer the technical specification of the battery. (NiCd default: 12mV, NiMH default: 7mV)

An optional feature using temperature probe contacting the surface of battery, the temperature cut-off can be on or off. If it is on, set the maximum temperature at which the charger should allow battery to reach during charge. Once a battery reaches this temperature during charge, the process will be terminated to protect the battery.
The battery is on the cyclic process of charge and discharge can often become warm after charge or discharge period. The program can insert a time delay to occur after each charge and discharge process to allow the battery adequate time to cool down before being subjected to the next process. The value ranges from 1 to 60 minutes.

When you start a charge process, the integral safety timer automatically starts running at the same time. This is programmed to prevent overcharge the battery if it proves to be faulty, or if the termination circuit cannot detect the battery full. The value for the safety timer should be generous enough to allow a full charge of the battery.

Safe timer Calculation

When charging NiCd or NiMH batteries, divide the capacity by current, then divide the result by 11.9, set this number as the value for safety timer setting. If the charger stopped at this threshold, about 140% of the capacity will have been fed into the battery.

For example:

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Current</th>
<th>Safety Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000mAh</td>
<td>2.0A</td>
<td>(2000/2.0=1000)/11.9=84 minutes</td>
</tr>
<tr>
<td>3300mAh</td>
<td>3.0A</td>
<td>(3300/3.0=1100)/11.9=92 minutes</td>
</tr>
<tr>
<td>1000mAh</td>
<td>1.2A</td>
<td>(1000/1.2=833)/11.9=70 minutes</td>
</tr>
</tbody>
</table>

This program sets the maximum charge capacity that will be supplied to the battery during charge. If the delta-pack voltage is not detected nor the safety timer expired by any reason, this feature will automatically stop the process at the selected capacity value.

The beep sounds at every time pressing the buttons to confirm your action. The beep or melody sounded at various times during operation to alert different mode changes. These audible sounds can be on or off.

This program monitors the voltage of input battery. If the voltage drops below the value you set the operation forcibly terminated to protect the input battery.
6. Lithium battery (Lilo/LiPo/LiFe/LiHV) program

These programs are only suitable for charging and discharging Lithium batteries with a nominal voltage of 3.3V, 3.6V, 3.7V and 3.8V per cell. These batteries need to adopt different charge technique is termed a constant voltage (CV) and constant current (CC) method. The charge current varies according to the battery capacity and performance. The final voltage of charge process is also very important; it should be precisely matched with the nominal voltage of the battery. They are 4.2V for LiPo, 4.1V for Lilo, and 3.6 V for LiFe, and 4.35V for LiHV. The charge current and nominal voltage as for cell count set on the charge program must always be correct for the battery to be charged.

Alarm: The LiHV Mode just support to 4.35V Li-battery, it is forbidden to use it for other kind battery. It is cannot charge the lipo battery which the voltage is 4.20V. Otherwise it will lead to explosion.

When you are willing to alter the parameter value in the program, press Start/Enter key to make it blink then change the value with INC or DEC key. The value will be stored by pressing Start/Enter key once.

6.1 Charging of Lithium Battery

This charging mode is for LiPo/Lilo/LiFe/LiHV battery without balance lead. The left side of the first line shows the type of battery you select at the users setting. The value on the left side of second line sets a charge current and the value on the right side of second line sets the voltage of the battery pack. After setting the current and voltage press Start/Enter key for more than 3 seconds to start the process. (Charge current: 0.1~10.0A, Voltage: 3.7~22.2V)

This shows the number of cells you set up and the processor detects. ' R:' shows the number of cells found by the charger and ' S:' is the number of cells selected by you at the previous screen. If both numbers are identical you can start charging by press Start/Enter button. If not, press Batt Type/Stop button to go back to previous screen. Then carefully check the number of cells of the battery pack to charge again.

The screen shows the present situation during charge process. To stop charging press Batt Type/Stop key once.
6.2 Charging Lithium battery at balance mode

This function is for balancing the voltage of Lithium-polymer battery cells while charging. In the balance mode, the battery needs to have a balance lead to connect to the battery's power lead to the output of the charger.

In this mode, the charging process will be different from ordinary charging mode. The internal processor of the charger will monitor the voltages of each cell of the battery pack and controls charging current that is feeding to each cell to normalise the voltage.

The value on the left side of second line sets a charge current and the value on the right side of second lines sets the voltage of the battery pack.

After setting the current and voltage press Start/Enter key for more than 3 seconds to start the process.

(Charge current:0.1~10.0A, Volatge:3.7~22.2V)

This shows the number of cells you set up and the processor detects. 'R: ' shows the number of cells found by the charger and 'S:' is the number of cells selected by you at the previous screen. If both numbers are identical you can start charging by press Start /Enter button. If not, press Batt type/Stop button to go back to previous screen. Then carefully check the number of cells of the battery pack to charge again.

The screen shows the present situation during charge process. To stop charging press Batt type/Stop key once.

6.3 'FAST' charging of Lithium battery

The charging current is getting smaller as the process goes to the near end term of Lithium battery charging. To finish charging process earlier, this program eliminates certain term of CV process. Actually, the charging current will goes to 1/5 from the initial value to end the process while the normal charging goes to 1/10 during CV term. The charging capacity may be a bit smaller than normal charging but the process time will be reduced.

The value on the left side of the second lines sets the charge current. The value on the right side of the second lines sets the battery pack’s voltage. After setting current and voltage, press Start/Enter for more than 3 second to start the process.

This shows the number of cells you set up and the processor detects. 'R: ' shows the number of cells found by the charger and 'S:' is the number of cells selected by you at the previous screen. If both numbers are identical you can start charging by press Start /Enter button. If not, press Batt type/Stop button to go back to previous screen. Then carefully check the number of cells of the battery pack to charge again.
6.4 'STORAGE' control of lithium battery

This is for charging or discharging Lithium battery not to be used for the time being. The program will determine to charge or discharge the battery to the certain voltage depending on the voltage of the battery at its initial stage. They are different from the type of the battery, 3.75V for Lilo, 3.85V for LiPo and 3.3V for LiFe per cell. If the voltage of battery at its initial stage is over the voltage level to storage, the program will start to discharge.

At this screen, you can set up the current and the voltage of the battery pack to be charged. The current will be used for charge or discharge the battery to reach the 'storage' level of voltage.

6.5 Discharging Lithium battery

The value of discharge current on the left side of screen may not exceed 1C for a maximum safety and the final voltage on the right should not be under the voltage level that is recommended by the battery manufacturer to avoid deep discharging. To start to discharge, press Start/Enter key for more than 3 seconds.

This shows the present state of discharge. To stop discharging press Batt type/Stop key once.
6.6 Voltage balancing and monitoring during the discharge

The processor monitors the voltage of individual cells during 'storage-mode' and 'discharge' of Lithium battery pack. It tries to normalise the voltages to be equal. For this feature, the individual plug of the battery pack should be connected to the individual port of the charger.

If the voltage of any one or more cells varies abnormally during the procedure, it terminates the process forcibly with the error massage. If this happens, the battery pack contains the bad cell, or the bad connection of the cable plug. You can easily know which one cell is bad by pressing INC button at time of showing the error message.

![Image showing the display with voltage values and INC button highlighted]

The processor found that the voltage of one of the cell in the Lithium battery pack is too low.

![Image showing the display with voltage values and INC button highlighted]

In this case, the 4th cell is bad. If there happens the connection-break of the cable or plug, the voltage value may show zero.

7. NiMH/NiCd battery program

These programs are for charging or discharging NiMH (Nickel-Metal-Hydride) or NiCd (Nickel-Cadmium) battery commonly used for R/C model applications. To alter the value at the display, press Start/Enter key to make it blink then change the value using INC or DEC key. The value will be stored by pressing Start/Enter key once.

To start the process, press Start/Enter button for more than 3 seconds.

7.1 Charging of NiCd/NiMH battery

![Image showing the display with charge information]

This program simply charge the battery using the current you set. But in 'Man' mode, it will charge the battery with the charge current you set at the display. Each mode can be switched by pressing INC and DEC button simultaneously when the current field is blinking.

![Image showing the display with charge information]

The screen displays the current state of charging. To stop the process, press Batt type/Stop key once. The audible sound indicates you the end of process.
7.2 Discharging of NiCd/NiMH battery

Set discharge current on the left and final voltage on the right. The discharge current ranges from 0.1 to 1.0A and the final voltage ranges from 0.1 to 25.0V). To start the process, press Start/Enter key more than 3 seconds.

The screen displays the current state of discharge. You can alter the discharge current by pressing Start/Enter key during the process. Once you change the current value, store it by pressing Start/Enter button again. To stop discharging press Batt type/Stop key once. The audible sound indicated you at the end of process.

7.3 Charge/discharge & discharge/charge cycle of NiMH/NiCd battery

Set the sequence on the left and the number of cycle on the right. You can use this function for balancing, refreshing and break-in the battery. To avoid rising temperature of the battery, there will a brief cool-off period that already fixed at 'User setting' after each charge and discharge process. The cycling number ranges from 1 to 5.

To stop the process, press Batt type/Stop key once.

At the end of the process, you can see charged or discharged electric capacities of the battery at each cyclic process. By pressing INC or DEC button, the screen shows the result of each cycle in order.
8. Pb(lead-sulphuric acid) battery program

This is programmed for charging Pb(lead-sulphuric acid) battery with nominal voltage from 2 to 36V. Pb batteries are totally different from NiCd or NiMH batteries. They can only deliver relatively lower current compare to their capacity, and similar restrictions definitely apply to charge. So the optimal charge current will be 1/10 of the capacity. Pb batteries must not be charged rapidly. Always follow the instruction is supplied by the manufacturer of battery.

When you are willing to alter the parameter value in the program, press Start/Enter key to make it blink then change the value with INC or DEC key. The value will be stored by pressing Start/Enter key once.

8.1 Charging of Pb battery

Set up the charge current on the left and the nominal voltage of the battery on the right. The charge current ranges from 0.1 to 6.0A and the voltage should be matched with the battery being charged.

Start the charge process by pressing Start/Enter key for more than 3 seconds.

The screen displays the state of charging process. To stop charging forcibly, press Batt type/Stop key once. The audible sound indicates you at the end of process.

8.2 Discharging of Pb battery

Set discharge current on the left and final voltage on the right. The discharge current ranges from 0.1 to 1.0A.

To start the process, press Start/Enter key for more than 3 seconds.

The screen displays the current state of discharge. You can alter the discharge current by pressing Start/Enter key during the process. Once you change the current value, store it by pressing Start/Enter button again. To stop discharging press Batt Type/Stop key once. The audible sound indicates you at the end of process.
9. Cell Meter test program

This charger also can be used to as the cell meter. It can show the main voltage of each cells and the highest/lowest voltage.

Choose the cell meter program window, press Start to enter.

Show 1-4 cell battery voltage, press DEC to show 5-8 cell's voltage

Show 5-8 cell’s battery voltage.

10. IR test program

It will know the performance of the battery from the IR value. The value of the IR which tested by this charger is the relative value (it is not the absolute value). If you want to compare with several more batteries, it is better test in the same voltage. If the test data is near, then the performance of the battery is better.

Choose the IR test program, press Start to enter.
11. Memory Mode

The Charger can save setting data of each programs, it can save 10 groups data for each kind of battery, including the cells of the battery, setting charge current and so on. Users do not need to set the data again when they use the batteries which have been memory. It is easier and more convenient.

Choose the program of the corresponding battery type, press INC or DEC to choose any one numbers from “0 to 9”. Press “Enter” to enter the window of setting data. Users can enter to charge or back from current window after finish the setting, then it do not set any data when you use the battery next time. Of course users can re-set the new data if they want to change.

12. Various information during the process

You can inquire various information on LCD screen during charging or discharging process. When you press DEC button the charger shows the establishment of user settings. And also you can monitor the voltage of individual cell by pressing INC button when the individual connection cable is linked to the Lithium battery being processed.

It comes to the final voltage when the program ended.
Displayed capacity cut-off function is turn on and the setting value of capacity.

Displayed safety timer is turn on and duration of time in minutes.

Displayed temperature cut-off function is turn on.

The external temperature is displayed when the temperature probe is used.

Present input voltage.

The battery is connected with each port through cable; you can check voltage of each cell in the battery pack. When the cable is connected with the ports on the charger, the program will display voltage of up to 6 batteries.

13. Warning and error messages

It incorporates a variety of functions for the systems to verify processes and the state of the electronics. In case of an error the screen will display the cause of error and emit an audible sound.

Incorrect polarity connected.

Battery connection is interrupted.

Short-circuit of the output termination.
Input voltage wrong.

The voltage of the battery pack has been selected incorrectly!

The charger has malfunctioned for some reason. Seek professional advice.

The voltage is lower than which is set. Please check the number of cells in the battery pack.

The voltage is higher than which is set. Please check the number of cells in the battery pack.

Voltage of one cell in the battery pack is too low, please check the voltage of each cell.

Voltage of one cell in the battery pack is too high; please check the voltage of each cell.

Wrong connection of the connector detected; please check the connector and cable.

The internal temperature of the unit goes too high. Cool down the unit.

The processor cannot control the feeding current, please repair it.
14. Specifications

Stated values refer to one charger except dimension & weight

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage Range:</td>
<td>DC 10.0 ~ 18.0 Volt</td>
</tr>
<tr>
<td>Charge Power:</td>
<td>Max.100 Watts for each pc.</td>
</tr>
<tr>
<td>Discharger Power:</td>
<td>Max.5 Watts for each pc.</td>
</tr>
<tr>
<td>Charge current range:</td>
<td>0.1 ~ 10.0A for each pc.</td>
</tr>
<tr>
<td>Cell Count:</td>
<td>115 NiCd/NiMH cells, 16 LiPo/Lilon/LiFe cells, 1-10 Lead-Acid cells (2V - 20V)</td>
</tr>
<tr>
<td>Current Drain for Balancing Lithium:</td>
<td>300mA</td>
</tr>
<tr>
<td>Dimensions:</td>
<td></td>
</tr>
<tr>
<td>Net Weight:</td>
<td></td>
</tr>
</tbody>
</table>

The set contains:

1. Plu-in battery clamps
2. TP/FP Adaptor
3. JST Adaptor
4. XT90 charging cable
5. XT60 charging cable
6. JST/BEC charging cable
7. Crocodile clip charging cable
8. 18AWG wire charging cable
15. Warranty and service

We warrant this product for a period of one year (12 months) from the date of purchase. The guarantee applies only to such material or operational defects, which are present at the time of purchasing the product. During that period, we will replace without service charge any product deemed defective due to those causes. You will be required to present proof of purchase (invoice or receipt). This warranty does not cover the damage due to wear, overloading, incompetent handling or using of incorrect accessories.

Note: